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Outline
● Origins and main characteristics

● Microservices

● Container orchestration

● Design patterns



R. Lachaize, T. Ropars 5

Microservices (1/2)
● An architectural style for the design of applications and software 

services.
● This paradigm has connections and synergies with other software 

engineering/management trends such as DevOps and 12-factor apps.

● A microservice architecture is a service-oriented architecture (SOA), 
in which applications are decomposed into small, loosely-coupled 
services, with each service being relatively small and focused on a 
specific functionality.

● The opposite of a “software monolith”, a.k.a. a “monolithic architecture”.
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Microservices (2/2)
● Each service has an independent codebase.
● Each service is owned, developed/maintained, and operated by a 

small team.

● Each service can be viewed as its own mini-application, with 
independent tests, builds, configuration, data and deployments.

● Services are executed in separate processes and communicate 
through network APIs.

● The API of a given service can be synchronous or asynchronous.
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Microservice-based architectures – Examples (1/2)

Hipster Shop
● An open-source demo application created by Google

● E-commerce Web application

● Available from: https://github.com/GoogleCloudPlatform/microservices-demo
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Microservice-based architectures – Examples (2/2)

DeathstarBench
● A set of open-source demo applications/benchmarks created by Cornell University

● Several applications: Social network (see figure below), Hotel reservation, Media service, …

● Code available from: https://github.com/delimitrou/DeathStarBench/

● Research paper: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
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Microservices – Potential benefits
● Small and focused teams

● Better communication between teams

● Increased agility, enabling faster evolution and more frequent deployments
§ “Continuous integration” (CI) and “Continuous delivery” (CD)

● Continuous innovation (e.g., experimentation with new features through A/B testing)

● Modularity
§ Simplified support for localized changes
§ “Polyglot” design: Simplified support for using diverse technologies (programming languages 

and frameworks, libraries, storage systems) in different parts of the global application.

● Improved fault isolation

● Better scaling and optimized resource usage

● Improved observability
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Microservices – Challenges
● Complexity (e.g., due to increased distribution)

● API versioning and integration

● Data integrity and consistency

● Monitoring and logging
● Service discovery and routing

● Availability

● Performance issues (e.g., increased average and tail latencies)
● Achieving insightful and efficient end-to-end observability (distributed, large-

scale debugging and profiling
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Communication protocols (1/4)
All interactions between apps/services are based on network (layer-5 / 
application-level) protocols. We will describe the main ones.
● Request-response protocols

§ Can be either synchronous (client blocks until reply) or asynchronous
(non-blocking)

§ The asynchronous pattern:
● is more complex but more efficient and resilient (introduces less coupling between 

services).
● requires identifiers for associating requests and responses.

§ Main protocols: HTTP 1.1 and HTTP/2
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Communication protocols (2/4)
● Request-response variants:

§ Message queues
● An asynchronous request-response pattern can also be implemented with message queues.
● Using one (single consumer) queue for each direction.
● Example: AMQP (point-to-point mode), NATS (request-reply mode)

§ Websockets
● Supports low-latency, bidirectional communication (server can send messages without 

awaiting client requests).
● Uses HTTP as bootstrap.

§ Remote Procedure Calls 
● Higher-level construct (procedure calls rather than messages). Supports bidirectional streams.
● Example: gRPC (by Google - https://grpc.io) based on HTTP/2

https://grpc.io/
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Communication protocols (3/4)
● Publish-subscribe protocols:

§ Allow decoupling message producers (“publishers”) from message 
consumers (“subscribers”) through topics subscriptions.

§ Are inherently asynchronous.

§ Support unidirectional, one-to-many or many-to-many communication 
patterns.

§ Enable loose coupling between services, and even transparent integration.

§ Example: AMQP (pub-sub mode), NATS (pub-sub mode)
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Communication protocols (4/4)
● Remark: Idempotent requests

§ Because cloud applications are prone to (machine/service/communication) failures, a 
given message may be sent and received multiple times.

§ Regardless of the chosen communication pattern and protocol, in order to 
handle failures in a correct and simple way, it is generally advised to design 
idempotent application-level protocols.

§ A message is idempotent if processing it N times produces the same result as 
processing it once.

§ This requires:
● Using unique message identifiers.
● Designing services and data models that keep track of such identifiers (or do not need them)
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Gateways
● Act as a stable entry point for requests sent by external clients to a cloud 

service.
● Play various roles:

§ SSL termination (i.e., termination of the SSL channel established between a client 
and the entrance of the cloud platform).

§ Client/service authentication.
§ Abstracting the internal (and possibly moving) architecture of a high-level service 

(e.g., monolithic design vs microservice architecture).
§ Abstracting the dynamic nature of the service implementation (e.g., due to 

autoscaling and fault tolerance).
§ Providing access to (relatively) static resources/data (e.g., HTML/CSS files).

● A single gateway can perform one or several roles.
● Several gateways may be layered.
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API gateway (1/6)
● A particular type of gateway in the context of a microservice architecture.

§ Exports a high-level service API to the external clients (typically HTTP/REST-based).
§ Forwards the client requests to the appropriate service(s) in the backend architecture.

● Main benefits:
§ Decouples clients from services (e.g., services can be versioned or refactored 

without introducing strong dependencies).
§ Allows using non-HTTP protocols for the services (e.g., messaging protocols).

● Main responsibilities:
§ Routing
§ Aggregation
§ Feature offload



API gateway (2/6)
Routing
● One of the most common functions of 

a gateway.
● Forwards requests to backend 

services (which are in a private network 
not directly accessible from clients).

● The selection of the recipient service 
instance(s) is typically based on routing 
rules defined with respect to:
§ In-request metadata such as IP, port, 

protocol headers, target URL
§ Gateway-level statistics regarding load 

balancing, availability of the different service 
replicas
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client

API gateway

service A service A service B …
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API gateway (3/6)
Aggregation
● A gateway may also act as an aggregator.

● In such a setup, a single external client request received by the gateway is translated (by the gateway 
itself) into a sequence of requests to multiple services.

● Benefits:
§ Provides higher-level operations to the clients.
§ Helps improving the client-perceived latency by reducing the number of communication round-trips 

between the client and the cloud service.

● Drawbacks:
§ May increase coupling between the gateway and the service. The gateway may itself become a 

monolith.
§ May significantly increase the processing load on the gateway.

● An alternative design consists in using a separate aggregation service.
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API gateway (4/6)
Aggregation

client
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API gateway (5/6)
Offloading
● A gateway can also offload some functionality from the individual services, if 

such functionality is a “cross-cutting” concern (i.e., not a part of the business 
logic of a service).

● Typical examples:
§ Authentication
§ Logging
§ Rate limiting, retry policies, circuit breaking
§ Compression

● Like for aggregation, putting too many features on a gateway introduces risks 
of reintroducing monoliths or performance bottlenecks.
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API gateway (6/6)
● An API gateway may become a performance bottleneck and/or a single point of 

failure.
● It is thus necessary:

§ To monitor the performance/load of a gateway (not just the backend services)
§ To replicate the gateway and use load balancing (e.g., via DNS services)

● API gateways are typically implemented using HTTP reverse proxies (for example: Nginx, 
HAproxy).

● API gateways can be deployed and managed directly by cloud tenants

● … or cloud tenant can also choose to rely on a managed gateway service provided by 
the cloud platform. Examples: AWS API Gateway, Google Cloud Endpoints.
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Internal vs. external service communication
There are various categories of network traffic in a (cloud) cluster:
● Ingress traffic (a.k.a. “North-South” traffic)

§ Requests from external clients into the cluster
§ Handled by “API gateways” (also known as “ingress controllers” or “ingress gateways”)

● Internal traffic (a.k.a. “East-West” traffic)
§ Communications between (micro)services running on the cluster
§ Handled by the distributed “service mesh” (this concept will be detailed later)

● Egress traffic
§ Communications from a service running on the cluster to an external service (e.g., a remote 

storage service)
§ Handled by “egress gateways” (also known as “egress controllers”)

● Crucial for monitoring and controlling outgoing requests (e.g., for security purposes)
● Typically implemented at the level of the service mesh
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Service mesh (1/9)
● A microservice architecture introduces complex and frequent communications between 

various services.
● Given that failures are likely to happen, services must be resilient and almost immune 

to communication issues.

● As mentioned previously (“declarative communications”):
§ Dealing with network issues and advanced network configuration aspects (e.g., dynamic 

service discovery, security) should be addressed at the infrastructure level rather within 
applications.

§ This yields simpler and more robust applications and supports dynamic modifications of the 
networking configuration.

§ Within a cloud native infrastructure, a service mesh is a distributed system in charge of 
managing these aspects.



R. Lachaize, T. Ropars 25

Service mesh (2/9)
● The main building block of a service mesh is a proxy.

§ There is typically one proxy instance running next to each service instance.
● (In other words, there are many proxies deployed on each physical host of the system.)
● Some designs also support an alternative setup with a single proxy per host.
● Using one proxy per service results in higher resource consumption but yields simpler 

configurations and higher performance.

§ A proxy performs the following tasks:
● Intercepting all the incoming and outgoing traffic of its associated service instance.
● Handling the intercepted traffic according to specific configuration code/rules.
● Collecting and reporting metrics.



R. Lachaize, T. Ropars 26

Service mesh (3/9)
● Examples of proxy projects/implementations used in service meshes:

§ Envoy (https://www.envoyproxy.io)
§ Istio (https://istio.io)
§ Linkerd (https://linkerd.io)
§ Consul connect (https://www.consul.io)
§ (Note: some of these projects can also be used for other purposes.)

● Notes:
§ Proxies are often deployed using a “sidecar container” pattern.
§ In the Kubernetes architecture, a proxy runs in the same “Pod” as its associated 

service.
§ (These notions will be described in more details later.)

https://www.envoyproxy.io/
https://istio.io/
https://linkerd.io/
https://www.consul.io/
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Service mesh (4/9)
Distributed architecture:
● The collection of all the proxies in the service mesh is called the “data plane”.

● The component in charge of managing the data plane is called the “control 
plane”.
§ In particular, the control plane is in charge of deploying a consistent, distributed 

configuration on all the proxies and of reconfiguring them as needed over time.

§ The control plane usually exposes an API that can be used to configure the service 
mesh.

§ In addition, the control plane hosts other tasks (e.g., for telemetry and policy of the 
hosted services).
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Service mesh (5/9)
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Service mesh (6/9)

The main concerns handled by a service mesh can be divided into the 
following categories:
● Traffic management

● Failure handling

● Security

● Tracing and monitoring
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Service mesh (7/9)
Traffic management:
● General goals:

§ Managing traffic between services within the mesh
§ Managing traffic between in-mesh services and external services

● Within a mesh, each service can have multiple endpoint instances.

● The service mesh is in charge of performing request routing to an endpoint 
instance, according to considerations such as:
§ Service discovery (identification of new/removed instances)
§ Load balancing
§ Service versions
§ Environment type (e.g., testing vs production)

● Various criteria can be used for routing decisions:
§ Proxy configuration settings, proxy statistics, request contents/metadata
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Service mesh (8/9)
Failure handling:
● General goals:

§ Maintain service availability and correctness whenever possible
§ Mitigate the performance impact of failures

● Communication failures can (and will) occur due to various network or infrastructure issues.

● Two types of failures:
§ Transient: generally solved by request retries
§ Non-transient: require more complex/specific handlers

● Basic techniques/parameters:
§ Retries
§ Timeouts
§ Circuit breakers (rejecting further accesses to a failed service, in order to avoid cascading failures)

● The above mechanisms can be configured for each service (or service version). 

● The service mesh can also be used to inject failures (request aborts or delays) for testing purposes.
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Service mesh (9/9)
● Security:

§ General goals:
● Authentication (client/server, end user)
● Authorization / access control (client/server, end user)
● Confidentiality (traffic encryption)
● Management of secrets (credentials, keys)

● Tracing and monitoring:
§ General goals:

● Collecting and reporting metrics regarding traffic characteristics, performance, errors
● End-to-end (i.e., cross-service) request tracing (via correlated request identifiers), to facilitate 

traffic observation, troubleshooting and performance debugging 
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Outline
● Origins and main characteristics

● Microservices

● Container orchestration

● Design patterns
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Container orchestration (1/2)

● Vocabulary warning: Not to be confused with the expression “service 
orchestration”, which is often used with a somewhat different meaning.

● A container orchestrator is:
§ a software system 

§ … in charge of simplifying (through automation) the management of a 
fleet of container-based applications

§ … on a cluster of (virtual or physical) machines.
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Container orchestration (2/2)
The main duties of a container orchestrator include:

● The provisioning and deployment of containers

● The setup of the network configuration of the containers

● The placement decisions for the containers on the cluster nodes

● Health monitoring (for containers and nodes) and appropriate reactions when needed

● Load balancing between containers

● Autoscaling decisions (mostly for horizontal scaling but also possibly for vertical scaling)
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Container orchestration – Case study: Kubernetes

● Kubernetes: currently the most popular container orchestrator
● Also known under the abbreviation “k8s”

● A project initially developed by Google and influenced by the design of previous (closed, 
internal) cluster/container management systems used within the company.

● Released as open source in 2014. Now managed by the Cloud Native Computing 
Foundation (CNCF).

● Implemented in the Go language.

● A good/short introductory reference (for the description of the design principles):
§ B. Burns et al. Borg, Omega and Kubernetes:  Lessons learned from three container-management 

systems over a decade. ACM Queue. January-February 2016. 
https://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/44843.pdf

https://static.googleusercontent.com/media/research.google.com/fr/pubs/archive/44843.pdf
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Kubernetes components
● Kubernetes is a distributed system based on 3 main categories of components.

§ Master components: Provide the “control plane” of the cluster.
● Make global (cluster-wide) decisions. E.g., regarding the scheduling/placement of tasks, the 

number of replicas for a given service, the response to specific events like failures.
● Are typically deployed on dedicated nodes for better robustness.

§ Node components: Provide the “data plane” of the system. Act as local agents on 
the cluster resources :

● For health and performance monitoring
● For handling the orders issued by the control plane (e.g., running a new container)
● For setting up the network connectivity of the containers

§ Addons: Provide additional services, such as:
● DNS services
● High-level user interfaces (e.g., management/monitoring dashboards)
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Kubernetes components overview
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Container runtime interface 
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Kubernetes components – Details (1/5)
● Master components

§ Kube-api-server: the front end for the Kubernetes control plane
● Exposes the API of the control plane
● Designed for horizontal scaling (load balancing)

§ Etcd: a strongly consistent and highly available key-value database
● Used to store all the cluster configuration/metadata, including the current state and desired 

state of the cluster

§ Kube-scheduler: monitors the creation of new “Pods” and selects nodes for them
● Placement decisions for Pods are based on various factors, including: individual and collective 

resource requirements, hardware/software/policy constraints, affinity and anti-affinity 
specifications, data locality …
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Kubernetes components – Details (2/5)
● Master components (continued)

§ Kube-controller-manager: runs (most of) the Kubernetes controllers
● Logically, each controller is a distinct process
● However, to reduce complexity, all controllers are compiled into a single binary and run in a 

single OS process
● Some controllers can also run externally

§ Cloud-controller-manager: runs controllers that interact with the underlying cloud 
provider

● Allows the cloud provider’s code and the Kubernetes code to evolve independently of each 
other
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Kubernetes components – Details (3/5)
Remarks:

● Master components are replicated on multiple master nodes for failover and 
high availability.

● “Managed Kubernetes” offerings typically offload the burden of 
hosting/administrating these master components from the end-users (cloud 
tenants).
§ Examples : Google Kubernetes Engine (GKE), Azure Kubernetes Service (AKS), 

AWS EKS.
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Kubernetes components – Details (4/5)
● Node components: Run on every compute (worker) node of the cluster

§ Kubelet: local agent in charge of running containers in “Pods”
● Reads and applies the Pods specifications
● Checks the health of the containers
● Does not manage the containers that were not created by Kubernetes

§ Kube-proxy: local network proxy
● Maintains the network configuration/rules on the cluster nodes (regarding communication with 

other cluster nodes and external nodes), in order to support the Kubernetes “service” concept.
● Typically relies on the local OS services (e.g., packet filtering) to implement traffic forwarding.

§ Container runtime: in charge of executing containers
● The Kubernetes CRI (Container Runtime Interface) provides an abstract interface that allows 

plugging various runtime implementations (e.g., Docker, containerd, cri-o, …)
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Kubernetes components – Details (5/5)
● Add-ons: Some examples

§ DNS: Serves DNS records for Kubernetes services
● Containers started by Kubernetes automatically include this DNS server for their DND lookups

§ Web UI (Dashboard)
● General-purpose Web-based user interface for Kubernetes clusters
● Allows managing and troubleshooting the Kubernetes cluster, and applications running on the cluster

§ Container resource monitoring
● Records generic time-series of metrics about containers in a centralized database
● Provides a user interface to browse the collected data

§ Cluster-level logging
● In charge of collecting and saving container logs to a central store with a search/browse interface.
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Kubernetes – Main concepts (1/4)
● Pods:

§ A pod is an abstraction encapsulating a set of containerized components.
§ A pod is the basic scheduling unit for Kubernetes.
§ There are two main setups in practice:

● Pod with a single container
● Pod with multiple containers that work together

§ All the containers within a pod are guaranteed to be deployed on the same machine and 
can share resources.

§ Each pod runs a single instance of an application (there is no replication/sharding within a pod).
§ Networking:

● Each pod is assigned a unique IP address.
● Containers within the same pod share the same network namespace (including network ports).

● Containers within the same pod can communicate using localhost.

§ Storage:
● A pod can specify a set of shared storage volumes, which can be accessed by all the containers within the 

pod.
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Kubernetes – Main concepts (2/4)
● Service:

§ In Kubernetes, a “service” is an “endpoint” abstraction allowing to expose an application (running 
as a set of pods, characterized by a given “label”) as a network service.

§ Useful to abstract the fact that the pod instances providing a given functionality can vary over time 
(e.g., due to scaling or load balancing).

● Volume:
§ On-disk files in a container are ephemeral (they disappear upon termination of the container), 

which can be limiting in certain setups/situations.
§ Volumes survive container crashes/restarts and support sharing between containers in a pod.
§ The lifetime of a volume corresponds to the lifetime of the enclosing pod.
§ Many types of backing storage systems are supported.

● Persistent volume:
§ Unlike a standard volume, a persistent volume can exist/survive independently from the pod(s) 

that may consume it. The same persistent volume may be used successively by different pods.
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Kubernetes – Main concepts (3/4)

● Namespace:
§ Warning: Same word but not the same concept as the notion of (Linux) namespaces 

used to implement containers.

§ Kubernetes allows using multiple virtual clusters on the same physical cluster.

§ Such a configuration is useful for environments in which there are many users spread 
across multiple teams and projects.

§ The notion of “namespaces” is used to define such virtual clusters.
● Provides a scope for naming resources (a resource name must be unique within a given 

namespace).
● Supports resource quotas to control the division of resources.
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Kubernetes – Main concepts (4/4)
● Controllers:

§ A concept inspired from other fields like robotics and automation/control theory.

§ A “control loop”:
● is an infinite loop whose purpose is to regulate the behavior of the system.
● continually monitors the current state of the system (here, a cluster) and acts accordingly in 

order to reach a desired state (analogy: a thermostat).

§ Kubernetes uses many different controllers, each in charge of a specific aspect of 
the cluster state.

● A set of built-in controllers (running inside the kube-controller-manager) supporting the 
important core behaviors.

● Also possibly additional, user-defined controllers (that can run within Kubernetes, as a set of 
pods, or outside).
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Kubernetes – Some examples of controllers (1/2)

● DaemonSet: ensures that all (or some) nodes of the cluster run a copy of a Pod.
§ For example, useful to run a storage daemon or a logging/monitoring daemon on every node.

● ReplicaSet: maintains a stable number of replica pods running at any given time.
§ Typically used to enforce a given replication factor in order to provide high availability guarantees.

● Deployment: provides declarative updates for Pods and ReplicaSets.
§ A ”deployment object” is used to describe a desired state.
§ Then the deployment controller changes the actual state at a controlled rate, in order to reach the 

desired state.
§ Useful for many purposes: rolling out and monitoring ReplicaSets, scaling ReplicaSets, updating 

Pods, rolling back to earlier deployment versions, …
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Kubernetes – Some examples of controllers (2/2)

● StatefulSet: manages applications that have one or more of the following 
requirements:
§ Stable, unique network identifiers
§ Stable, persistent storage
§ Ordered, graceful deployment and scaling
§ Ordered, automated rolling updates

● Unlike a ReplicaSet, a StatefulSet has the following properties:
§ Each replica gets a persistent hostname with a unique index (e.g., db-0, db-1, etc.)
§ Each replica is created in order from lowest to highest index, and the creation will pause until the 

Pod at the previous index is healthy and available. (The same principle also applies when scaling 
up the number of replicas.)

§ When a StatefulSet is deleted, the replica pods are deleted in order from highest to lowest. (The 
same principle also applies when scaling down the number of replicas.)



R. Lachaize, T. Ropars 51

Kubernetes – Metadata management
● In Kubernetes, all kinds of resource objects (e.g., instances of Pods, ReplicaSets, Nodes, etc.) 

carry some metadata.

● These metadata are useful for different purposes, such as:
§ Keeping track of important information
§ Categorizing resource instances, and associating them with each other
§ Defining custom information and behaviors
§ Note: In most cases, these metadata do not imply any built-in semantics by default

● There are different types of metadata:
§ Labels: key-value pairs attached to an object (analogy: catalog of dishes)
§ Selectors: used to identify/filter objects based on their labels (analogy: filter to find gluten-free deserts)
§ Annotations: key-value pairs to store additional, non-identifying, arbitrary metadata, such as build information or 

release notes (analogy: list of ingredients and their origins)

Credits and more information:

● https://yuminlee2.medium.com/kubernetes-labels-selectors-and-annotations-2e3e931282a7

● https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

● https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

https://yuminlee2.medium.com/kubernetes-labels-selectors-and-annotations-2e3e931282a7
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
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Kubernetes metadata – some details about labels (1/2)

● “Labels are intended to be used to specify identifying attributes of objects that are 
meaningful and relevant to users, but do not directly imply semantics to the core system.”

● “Labels enable users to map their own organizational structures onto system objects in a 
loosely coupled fashion.”

● Labels can be attached to objects at creation time and subsequently added and modified 
at any time. 

● Each object can have a set of key/value labels defined. Each Key must be unique for a 
given object.

(Source: Kubernetes documentation - https://kubernetes.io/docs/concepts/overview/working-with-
objects/labels/)

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
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Kubernetes metadata – some details about labels (2/2)

Example Labels:

● "release" : "stable” , "release" : "canary"

● "environment" : "dev" , "environment" : "qa" , "environment" : "production"

● "tier" : "frontend” , "tier" : "backend” , "tier" : "cache"

● "partition" : "customerA” , "partition" : "customerB"

● "track" : "daily” , "track" : "weekly"

(Source: Kubernetes documentation - https://kubernetes.io/docs/concepts/overview/working-with-
objects/labels/)

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


Before we carry on,

some general information and 
reminders about containers
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Managing containers (1/2)
The containers ecosystem includes tools and facilities to simplify the 
management of container images (i.e., the files to be included in the file system 
within a container).

● Application packaging
§ Management of executables, libraries, and configuration files
§ Management of version numbers and dependencies
§ Layered file system, allowing to define new images based on existing ones, in a 

simple and space-efficient way

● Distribution and sharing of images
§ Repository (“hub”) of existing images
§ Facilitated by the fact that most container images are lightweight (and layered)
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Managing containers (2/2)
In practice, the management of containers is addressed via a set of software tools, which 
encompass different needs:
● Building container images, managing images, sharing and downloading images

● Managing container instances, running containers

There exists several tools with roughly similar features, like Docker and Podman.
The above-mentioned tools are themselves based on several modular building blocks, 
among which:

● “Low-level runtimes” focused on the machinery for running containers. Example: runc
(used by Docker).

● “High-level runtimes” focused on support for download/managing container images and 
running a container from an image. Example: containerd (used by Docker).
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OCI: Open Container Initiative (1/2)
● The OCI is (since 2015) “an open governance structure for the express purpose of 

creating open industry standards around container formats and runtimes”.
● So far, 3 main specifications have been produced (image, runtime, distribution).

● Image format specification:
§ “Defines the requirements for an OCI Image (container image), which consists of a manifest, an 

optional image index, a set of filesystem layers, and a configuration.”

● Runtime specification:
§ “Specifies the configuration, execution environment, and lifecycle of a container.” In particular, 

“defines how to properly run a container "filesystem bundle" which fully adheres to the OCI Image 
Format Specification.”.

● Distribution specification:
§ “Defines an API protocol to facilitate and standardize the distribution of content. It was launched in 

April 2018 to standardize container image distribution around the specification for the Docker 
Registry HTTP API V2 protocol, which supports the pushing and pulling of container images.”
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OCI: Open Container Initiative (2/2)
● For more details:

§ I. Velichko. What Is a Standard Container (2021 edition). 
https://iximiuz.com/en/posts/oci-containers/

§ B. Chen. Open Container Initiative (OCI) Specifications. 2019. https://alibaba-
cloud.medium.com/open-container-initiative-oci-specifications-375b96658f55

§ A. Krajewska. Container image formats under the hood. 2020. 
https://snyk.io/blog/container-image-formats/

§ J. Webb. Docker and the OCI container ecosystem. LWN. 2022. 
https://lwn.net/Articles/902049/

§ OCI image spec: https://github.com/opencontainers/image-spec/
§ OCI runtime spec: https://github.com/opencontainers/runtime-spec
§ OCI distrib spec: https://github.com/opencontainers/distribution-spec

https://iximiuz.com/en/posts/oci-containers/
https://alibaba-cloud.medium.com/open-container-initiative-oci-specifications-375b96658f55
https://alibaba-cloud.medium.com/open-container-initiative-oci-specifications-375b96658f55
https://snyk.io/blog/container-image-formats/
https://lwn.net/Articles/902049/
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/distribution-spec


some general information and 
reminders about containers

Now, back to specific aspects of 
cluster orchestrators
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Container Orchestrators – Interfaces with the host (1/3)

Several standard interfaces have been specified:

● Container Networking Interface (CNI)
§ “a specification and libraries for writing plugins to configure network interfaces in 

Linux containers, along with a number of supported plugins.”
§ https://github.com/containernetworking/cn

● Container Storage Interface (CSI)
§ “A specification enabling storage vendors to develop a plugin once and have it work

across a number of container orchestration systems”
§ Main scope: provisioning and attaching storage volumes, managing snapshots. 
§ https://github.com/container-storage-interface/spec/blob/master/spec.md

https://github.com/containernetworking/cni
https://github.com/container-storage-interface/spec/blob/master/spec.md
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Container Orchestrators – Interfaces with the host (2/3)

Container Runtime Interface (CRI)
● Defined in the context of Kubernetes

● Related to the the OCI (Open Container Interface) runtime specification … but somewhat different and 
complementary
§ The OCI runtime specification defines the configuration, execution environment, and lifecycle of a container. In 

particular, it defines how to properly run a container "filesystem bundle" which fully adheres to the OCI Image 
Format Specification.

§ The container runtime interface (CRI) is an API for container runtimes to integrate with the kubelet
component on each compute/worker node.

§ The Kubernetes CRI leverages OCI-compliant runtimes.

● A CRI-compliant runtime has additional concerns compared to an OCI-compliant runtime. 
§ These concerns include image management and distribution, storage, networking, snapshotting, etc.
§ A CRI-compliant runtime is aimed at providing the functionality required to manage containers in a dynamic cloud 

environment whereas an OCI-compliant runtime focuses on a narrower goal: creating and running containers on a 
local machine.
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Container Orchestrators – Interfaces with the host (3/3)

Container Runtime Interface (CRI) – Continued
● Wrap-up:

§ The notion of CRI allows decoupling the kubelet from the underlying container runtime (in a flexible and 
extensible way). 

§ A CRI-compliant runtime (such as cri-o)  typically delegates the management of container execution to a 
(lower-level) OCI runtime (such as runc or crun).  

● Examples of CRI-compliant runtimes:
§ containerd, cri-o, kata containers (VM-based), Firecracker (VM-based)
§ Warning: Docker is not CRI compliant and deprecated (for usage on Kubernetes worker nodes). See: 

https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/

● For more information:
§ https://www.capitalone.com/tech/cloud/container-runtime/
§ https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
§ https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto

https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto
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Outline
● Origins and main characteristics

● Microservices

● Container orchestration

● Design patterns
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Cloud native design patterns – Overview (1/2)
● Many cloud native applications rely on a set on common, generic design patterns 

based on containers.
● Adhering to these patterns can help:

§ Building more efficient, adaptable and robust distributed applications
§ Improving developer productivity and fostering code reuse
§ Facilitating technical discussions between architects, developers, teams by providing a common 

vocabulary and conceptual framework

● Acknowledgments: 
§ This part of the lecture is heavily inspired by the following book:

● Designing distributed systems. Patterns and paradigms for scalable, reliable services. O’Reilly, 2018.
● Authored by Brendan Burns (co-founder of the Kubernetes project, distinguished engineer at Microsoft Azure 

and previously at Google Cloud Platform).
● Provides code examples based on Kubernetes.

§ For additional concepts and vocabulary, see also:
● https://docs.microsoft.com/en-us/azure/architecture/patterns/
● http://www.cloudcomputingpatterns.org

https://docs.microsoft.com/en-us/azure/architecture/patterns/
http://www.cloudcomputingpatterns.org/
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Cloud native design patterns – Overview (2/2)
● We will describe several kinds of patterns:

Single-node patterns:
forming the basic elements of a 
distributed system

Sidecar pattern
Ambassador pattern
Adapter pattern

Serving patterns:
for long-running, request-oriented 
applications

Replicated, load-balanced services
Sharded services
Scatter/gather pattern

Batch computational patterns:
for intermittent, parallel computations on 
an input dataset

Work queue system
Event-driven batch processing
Coordinated batch processing
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Single-node patterns:
forming the basic elements of a 
distributed system

Sidecar pattern
Ambassador pattern
Adapter pattern

Serving patterns:
for long-running, request-oriented 
applications

Replicated, load-balanced services
Sharded services
Scatter/gather pattern

Batch computational patterns:
for intermittent, parallel computations on 
an input dataset

Work queue system
Event-driven batch processing
Coordinated batch processing

Cloud native design patterns – Outline Overview 
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The sidecar pattern (1/2)
● A single-node pattern based on two containers:

§ Application container
§ Sidecar container

● The sidecar is co-scheduled with the application container and they can 
share resources (e.g., the network).
§ For example, in the case of Kubernetes, this is achieved using a Pod.

● The sidecar is generally transparent.
§ The application is unaware of its presence.
§ Because the application and sidecar containers interact indirectly (e.g., through the 

network, file system or other OS facilities), the application can be developed/built 
completely independently.
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The sidecar pattern (2/2)
● The purpose of the sidecar is to augment/improve the behavior of the application.

§ This can be useful both for legacy and cloud native applications.

● Typical use cases:
§ Introspection of the application container (e.g., for resource usage monitoring or debugging)
§ Updating the configuration of the application containers (e.g., through shared files)
§ Introducing network security features (e.g., encryption and authentication)
§ Implementing the “data plane” in a service mesh architecture (service discovery, load 

balancing, tracing, etc.)

● One of the main benefits of the sidecar pattern is code reuse. However, achieving 
modularity and reusability requires care about the following aspects:
§ Parameterized containers
§ Definition of the API surface of the containers
§ Documentation of the containers (e.g., within Dockerfiles)
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The ambassador pattern
● A particular form of sidecar pattern.

● This expression is usually dedicated to sidecars in charge of brokering 
communications between application containers and the outer world.

● Use cases:
§ The features handled by the control plane of a service mesh, which may also include 

the following examples.
§ Implementing a (transparent) proxy supporting routing to a sharded service.
§ Implementing a (transparent) proxy for service brokering.

● For example, a service may rely on a database, that is provisioned differently in various cloud 
environments (e.g., local vs. remote, IaaS vs. PaaS)

● The proxy handles the lookup and connection to the database service and abstracts away the 
differences. 

§ Implementing (transparent) request splitting for testing purposes.
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The adapter pattern
● A particular form of sidecar pattern.

● The adapter container is used to modify the interface provided by the application 
container, so that it conforms to a specific/homogeneous interface expected for all 
the applications in a given distributed system/infrastructure.

● The modifications can be related to the data format and/or the service API.

● Typical use cases:
§ Monitoring (e.g., collecting performance metrics)
§ Advanced health checks
§ Logging
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Single-node patterns:
forming the basic elements of a 
distributed system

Sidecar pattern
Ambassador pattern
Adapter pattern

Serving patterns:
for long-running, request-oriented 
applications

Replicated, load-balanced services
Sharded services
Scatter/gather pattern

Batch computational patterns:
for intermittent, parallel computations on 
an input dataset

Work queue system
Event-driven batch processing
Coordinated batch processing

Cloud native design patterns – Outline Overview 



Replicated load-balanced services (1/3)
● Principle:

§ Horizontal scaling using several 
instances (“replicas”) of the same 
service, in order to improve performance 
and reliability.

§ The load balancer is the service entry 
point and routes a given request to a 
given replica.

● The load balancer can be implemented:
§ either as an ambassador (embedded 

within every client)
§ or as an explicit, standalone service.
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client request

Load balancer

replica replica
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Replicated load-balanced services (2/3)

● The load balancer can use readiness probes to help the determine when a 
new replica is ready to server requests.
§ The load balancer can query a new replica through a specific HTTP URL to check if it 

is ready.
§ The readiness probe can be implemented as a sidecar of the service.

● For stateful services, the load balancer can use a routing algorithm that 
preserves “session stickiness”, so that the requests from the same client are 
routed to the same replica.
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Replicated load-balanced services (3/3)
● In the case of application requests with read-only semantics and implemented with 

HTTP, performance can be improved by introducing a Web caching layer between 
the load balancer and the service replicas.

client request

Load balancer

replica replica replica

Web cache Web cache

Cache miss



Sharded services (1/2)
● Also known as “partitioned services”.

● In contrast to a replicated service, in the 
case of a sharded service, each service 
instance (also named “shard”) is only 
capable of serving some of the requests.

● The frontend examines each request and 
routes it towards the appropriate shard, based 
on a sharding function applied to a request key.

● This pattern is useful for stateful services in 
which the size of the overall state (data) is too 
big to fit on a single machine.

● The sharding function can rely on either:
§ On key-range partitioning (based on the value of 

the original request key)
§ Or hashed-based partitioning, in which each 

partition owns a range of hashes. Typically, a 
technique named “consistent hashing” is used.
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client request 
R1 for item A

sharding front end

shard 1 shard 2

data items
A, B, C

data items
X, Y, Z

client request 
R2 for item X



Sharded services (2/2)

● This sharding pattern can also be 
combined with the previous pattern 
(replication), in order to support high 
availability.

● In order to address scaling (up and 
down) and load imbalance, a sharded
service must generally support 
dynamic shard rebalancing.
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client request 
R1 for item A

sharding front end

shard 1

data items
A, B, C

data items
X, Y, Z

shard 2



The scatter/gather pattern (1/2)
● Another tree-based distributed pattern.

● Unlike the basic replication or sharding
patterns, each service instance (often called 
“leaf node”) is involved in the processing of 
each request.
§ Each instance performs a small amount of 

processing and returns a result to the root instance.
§ The root instance combines all the partial 

results received from the instances, in order to 
build a complete result, which is sent back to the 
client.

● This pattern:
§ Can work with shards or identical replicas
§ Is useful for work that can be easily parallelized, 

i.e., when the different partitions can work 
mostly independently
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client request

Root node:
1) Contacts all leaf nodes in parallel

2) Merges results

Leaf node Leaf node Leaf node



The scatter/gather pattern (2/2)
● In order to improve performance, this 

pattern is usually augmented into a 
shared and replicated scatter/gather 
design. 
§ Each leaf node (shard) is replicated.
§ Each request is sent to one replica per 

shard.

● Using too many leaf nodes can hurt 
performance:
§ Parallelization overheads increase with the 

number of nodes.
§ Performance is limited by the slowest leaf 

node (“straggler effect”).
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client request

Root node:
1) Contacts all shards in parallel

2) Merges results

Shard #1
Replica #1

Shard #2
Replica #1

Shard #3
Replica #1
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Single-node patterns:
forming the basic elements of a 
distributed system

Sidecar pattern
Ambassador pattern
Adapter pattern

Serving patterns:
for long-running, request-oriented 
applications

Replicated, load-balanced services
Sharded services
Scatter/gather pattern

Batch computational patterns:
for intermittent, parallel computations on 
an input dataset

Work queue system
Event-driven batch processing
Coordinated batch processing

Cloud native design patterns – Outline Overview 



Work queue systems (1/5)
● A simple form of batch processing 

system.

● The work queue is used by clients to 
submit work items, to be processed 
by a set of workers.

● Each work item corresponds to an 
independent piece of work.

● Each worker processes one item at a 
time.

● The set of workers can be scaled up or 
down according to the amount of 
pending work.
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Work queue

Worker #1 Worker #2 Worker #3
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Work queue systems (2/5)
● Most of the queue management logic is independent from the actual type of work to be 

performed.
● Similarly, most of the interactions with the queue are independent from the internal 

implementation of the queue.

● Thus, it is easy to decouple application-specific and generic code logics, by using distinct 
containers. The generic logic can be put into ambassador containers.

● Main interfaces:
§ Work submission (between clients and the work queue manager)
§ Work queue submission (between the work queue manager and the actual work queue 

implementation)
§ Worker interface (between the actual work queue implementation and the workers)

● Assigning work
● Signaling work completion
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Work queue systems (3/5)
Fault tolerance
● Worker processes or machines may fail.
● A long-running work queue system must take into account such failures.

● Requires a mechanism to identify a failed worker and “resubmit” the work item 
(without involving the initial client).

● This problem is simplified if the processing of the work items is idempotent.
§ If so, there is no need to “undo” the partial side effects of the failed worker. It is only 

necessary to reassign the work item to another worker.



R. Lachaize, T. Ropars 86

Work queue systems (4/5)
Work queue implementation
Different strategies are possible for the concrete implementation of the work queue pattern. For example:

● Leveraging the job management features of a container orchestrator
§ The work queue is actually the job queue of the orchestrator.
§ The orchestrator selects a worker node and creates a new container for each work item.
§ The orchestrator is in charge of monitoring failed nodes/containers and creating another instance.

● Using a “publish-subscribe system
§ The work queue is actually a publish-subscribe topic, configured in such a way that each message is only fetched 

by one consumer.
§ A set of worker processes are created on a set of worker nodes.
§ Each worker fetches a work item from the topic, processes it, acknowledges it and starts over with a new item.
§ If a worker has not acknowledged a given message within a certain time interval, the worker is assumed to have 

failed and the message is automatically reinserted in the topic by the publish-subscribe infrastructure.
§ A container orchestrator can be used to manage the worker nodes/processes. But in this design, the orchestrator 

is not involved in the assignment of the work items. 
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Work queue systems (5/5)
Dynamic scaling of the workers
● The set of workers can be adjusted according to the amount of pending work, 

which may vary over time.

● A possible autoscaling design:
§ Monitoring two metrics:

● Interarrival time: average time (measured over a long period of observation) between the 
arrival of consecutive work items in the queue.

● Average processing time for the work items (not counting the time spent waiting in the queue).
§ Upscaling: to guarantee that (average processing time / number of parallel workers) 

is lower than the average interarrival time
● Increase number of workers and/or use faster machines

§ Downscaling: same principle in reverse direction if (average processing time / 
number of parallel workers) is much lower than the average interarrival time
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Event-driven batch processing (1/8)
● Also known as “workflow system”.
● Main principles:

§ Scenario in which a given event/input requires more than a single action. This could be, for 
example:

● The need to perform a sequence of actions
● The need to produce multiple outputs from the same input.

§ In such a scenario, we need to link multiple work queue together to form a directed acyclic 
graph (DAG) of processing stages.

● We will describe several architectural patterns for workflows:
§ Basic chain/sequence of work queues: simple generalization of the previous pattern 
§ Copier
§ Filter
§ Splitter
§ Sharder
§ Merger



Event-driven batch processing (2/8)
The “Copier” pattern
● Input: a single stream of work items

● Output: two or more duplicated streams of 
work items (each one is an identical copy of the 
input stream)

● Useful when there are multiple and 
independent processing tasks to be performed 
on the same items. 

● Example: transcoding a raw video stream into 
several target formats.

● Note: work items are not necessarily costly to 
duplicate because they do not have embed a 
copy of the data items (they may contain only 
references to the data being stored elsewhere).
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Event-driven batch processing (3/8)
The “Filter” pattern
● Input: a single stream of work items

● Output: a single stream of work items, in 
which, some of the original items have been 
removed, according to a particular criterion.

● Useful to perform conditional work depending 
on client-defined settings 

● Example: filter out work items according to the 
type of attached input file 

● Note: can be implemented using an 
ambassador container in front of a regular work 
queue
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Event-driven batch processing (4/8)
The “Splitter” pattern
● Input: a single stream of work items

● Output: two streams of work items. Each input 
item is forwarded to only one of the output 
streams according to a particular criterion.

● Useful to fork a processing pipeline into two 
distinct parts.

● Example: differentiate processing steps for 
orders based on the type of notification 
requested by users (email vs. text). 

● Note: a variant of this pattern can combine the 
“copier” and “splitter” behaviors (e.g., for users 
who choose both email and text notifications).
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Event-driven batch processing (5/8)
The “Sharder” pattern
● A variant of the splitter pattern

● Input: a single stream of work items

● Output: multiple output streams of work items. 
Each input item is forwarded to only one of 
the output streams according to a sharding
function.

● The sharding function may dynamically take 
into account the unavailabity of some output 
queues.

● Useful:
§ For large-scale,  hierarchical/distributed processing 

& load balancing
§ For improved reliability via partial availability (e.g., if 

the shards are placed on different data centers / 
regions)
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Event-driven batch processing (6/8)
The “Merger” pattern
● The opposite of a “copier” pattern
● Input: multiple input streams of work 

items

● Output: a single output stream of work 
items, which is the union of the input 
streams

● Useful for:
§ “Reconciling” different processing pipelines 

that share the same finishing steps (e.g., 
sharded pipelines)

§ Factoring server resources for workflows 
sharing common processing stages  
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Event-driven batch processing (7/8)
How to implement the previously described patterns?

● Inadequate solutions:
§ Using a “traditional” distributed storage system (e.g., file system, 

database, object storage) for such a purpose is often impractical for 
developers and can also raise efficiency and/or robustness concerns.

§ Similarly, using raw networks streams (e.g., TCP/IP sockets) is often 
cumbersome and fragile.
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Event-driven batch processing (8/8)
How to implement the previously described patterns? (continued)

● One of the most appropriate building blocks is a “publish-
subscribe” system
§ Also known as a “messaging bus” or “message broker”.
§ Each input or output stream of work items and results is mapped to a 

distinct “queue” (a.k.a. “topic”).
§ Each queue can receive items produced by one or more publishers.
§ Each queue can be consumed by one or more subscribers.
§ Each pattern instance:

● Acts as a subscriber for one or several queues
● Acts as a publisher for one or several queues



Coordinated batch processing (1/3)
● A specific set of patterns for parallel, multi-

step computations.

● Based on two main phases:
§ Phase 1: Parallel work distribution
§ Phase 2: “Aggregation” of the results to generate 

a global output

● Such patterns are used (with various 
incarnations) in many different domains, such 
as:
§ Scientific computing
§ Big data processing (e.g., the MapReduce 

programming model)

● Phase 1 is related to the “splitter/sharder” 
patterns described previously.

● We will mainly focus on phase 2, with two 
major patterns: “Join” and “Reduce”
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Coordinated batch processing (2/3)
“Join” pattern
● Also known as “barrier synchronization”.

● Ensures that a given set of work items have been 
processed before moving on to the next stage of a 
workflow.

● Warning: not the same thing as the previous 
“Merge” pattern
§ “Merge” merely combine multiple streams into one
§ Instead, “Join” ensures that all the processing streams 

have completed.

● Typical usage: ensures that no data/output is 
missing before some sort of aggregation is 
performed.

● Decreases the intrinsic parallelism within a workflow, 
and thus degrades the overall completion time.

● May be necessary to ensure the correctness of 
some parallel algorithms.
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JoinWork items are released
downstream only when 
all the top-level queues 
have completed
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Coordinated batch processing (3/3)
“Reduce” pattern
● Unlike the “join” pattern:

§ Does not require to wait until all the items have been processed. (More parallelism)
§ Progressively/optimistically merges together all the available results. 

● Each step of the reduce phase merges several items into a single one (hence the 
name: it “reduces” the number of output items).

● The reduce phase can be repeated as many (or as few) times as necessary in order 
to obtain a single output for the entire data set.

● Some examples of concrete “reduce” operations:
§ Count: counting the number of occurrences of each value (e.g., word count)
§ Sum: summation of a collection of different values


