
Serverless Cloud Platforms

Renaud Lachaize & Thomas Ropars
M2 GI

January 2024

R. Lachaize, T. Ropars 4

Acknowledgments and main references (1/2)

● S. Kounev et al. Serverless computing: What it is, and What it is not? Communications of the ACM. September
2023.
§ https://cacm.acm.org/magazines/2023/9/275695-serverless-computing/fulltext

● J. Schleier-Smith et al. What serverless computing is and should become: the next phase of Cloud computing.
Communications of the ACM. May 2021.
§ https://cacm.acm.org/magazines/2021/5/252179-what-serverless-computing-is-and-should-become/fulltext
§ Note: This is a simplified version of the next reference.

● E. Jonas et al. Cloud programming simplified: A Berkeley view on Serverless Computing. Technical report.
February 2019.
§ https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf

● P.Castro et al. The Rise of serverless computing. Communications of the ACM. December 2019.
§ https://cacm.acm.org/magazines/2019/12/241054-the-rise-of-serverless-computing/abstract

https://cacm.acm.org/magazines/2023/9/275695-serverless-computing/fulltext
https://cacm.acm.org/magazines/2021/5/252179-what-serverless-computing-is-and-should-become/fulltext
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://cacm.acm.org/magazines/2019/12/241054-the-rise-of-serverless-computing/abstract

R. Lachaize, T. Ropars 5

Acknowledgments and main references (2/2)

● J. Hellerstein et al. Serverless computing: One step forward and two steps back. In Proceedings of CIDR 2019.
January 2019.
§ https://www.cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

● Cloud Native Computing Foundation (CNCF) Working Group (WG) Serverless Whitepaper v1.0. 2018.
§ https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf

● L. Wang et al. Peeking behind the curtains of serverless platforms. In Proceedings of USENIX ATC 2018. July
2018.
§ https://www.usenix.org/conference/atc18/presentation/wang-liang

https://www.cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://www.usenix.org/conference/atc18/presentation/wang-liang

R. Lachaize, T. Ropars 6

Outline

● An overview of the serverless paradigm

● FaaS: Functions as a Service

R. Lachaize, T. Ropars 7

Preamble: The typical pain points of low-level cloud services

Some of the main issues to be addressed when setting up an environment for cloud users.

(Source: E. Jonas et al. Cloud programming simplified. A Berkeley view on serverless computing. 2019.)

1. Redundancy for availability
2. Geographic distribution of redundant copies (e.g., for disaster recovery)
3. Load balancing and request routing for efficient resource utilization
4. Autoscaling (up or down) in response to changes in input workload
5. Health monitoring
6. Logging events/messages (for debugging or performance tuning)
7. System upgrades (e.g., security patches)
8. Migration to new instances as they become available

R. Lachaize, T. Ropars 8

Introduction: What is “serverless computing”?
● A recent and growing trend in the design/usage model of cloud services.
● The “serverless” keyword refers to the fact that the management of the

underlying resources (which is often complex, tedious, and time-consuming)
is offloaded to the cloud provider.

● Obviously, internally, a serverless platform still very much relies on physical
servers!

● Main goals:
§ Simplicity of usage, good productivity for application developers
§ Support for “glue code” between various services hosted by a cloud provider
§ Very fine-grained pay-per-use billing model, especially useful for short / sporadic /

unpredictable tasks

R. Lachaize, T. Ropars 10

“Serverless computing” – A tentative definition (1/5)

● Unfortunately, there is no standardized definition to date. However, several
elements are commonly accepted.

● Key characteristics
§ Management of resource allocation is completely offloaded from the cloud

user/tenant
● ... including the management of auto-scaling.

§ Billing is based on the actual resource usage, instead of the quantity of
reserved resources.

§ Computation and storage are decoupled
● (at least for general-purpose compute tasks)
● Distinct services, scaled independently
● Computations are usually stateless

R. Lachaize, T. Ropars 11

“Serverless computing” – A tentative definition (2/5)

● Key abstractions:
§ General-purpose, user-programmable compute building blocks:

● A set of models sitting in-between IaaS/CaaS and PaaS
● FaaS: “Functions as a Service” (also known as “Cloud functions”)
● Also, some forms/variants of CaaS (Containers as a Service)

§ Scalable, provider-managed storage
● Possibly at various levels of abstraction (e.g., object store, NewSQL database …)
● Billing based on number of requests + volume of data

§ Trigger rules for computations, associated with many different types of
events/services, including:
● Communication/network services
● Storage services
● High-level application workflows

R. Lachaize, T. Ropars 12

“Serverless computing” – A tentative definition (3/5)

● Also includes specific services and frameworks:
§ Encompassing processing and/or storage
§ Example 1: Mobile Backend as a Service (MBaaS)

● For the common services used by mobile/web applications: notifications, cloud storage,
integration with social networks, analytics, authentication, …

● Billing based on number of service invocations + storage
● E.g., Google Firebase/Firestore, AWS Amplify

§ Example 2: Messaging (also known as ”publish/subscribe message bus”)
● Middleware layer providing a decoupling between data/event producers (a.k.a. “publishers”)

and consumers (a.k.a. “consumers”)
● Supports various communication schemes: one to many, many to one, many to many
● Useful for many different purposes, e.g., integration of various services, task dispatch,

notification, data/stream ingestion …
● Billing based on the volume of ingested data
● E.g., Google Cloud Pub/Sub, AWS MSK

R. Lachaize, T. Ropars 13

“Serverless computing” – A tentative definition (4/5)

● Also includes specific services and frameworks (continued):

§ Example 3: Big Data analysis
● Big Data query

§ SQL-like queries on very large data sets
§ Billing based on volume of processed data (+ storage)
§ E.g., AWS Athena, Google Cloud BigQuery

● Big Data transform
§ Batch and/or stream processing
§ Billing based on processing time and/or data volume
§ E.g., AWS Glue (based on Apache Spark), Google Cloud Dataflow (based on Apache

Beam)

R. Lachaize, T. Ropars 14

“Serverless computing” – A tentative definition (5/5)

● Warnings - Vocabulary: Some people/documents:

§ Use “serverless” and “FaaS” interchangeably [should be avoided]

§ Use “Backend as a Service” (BaaS) as a general notion encompassing:
● General-purpose storage systems (e.g., object storage, databases)
● Specialized services of various kinds such as MBaaS and Big Data facilities

§ … or, in contrast, use BaaS and MBaaS interchangeably

§ Define “Serverless computing” as: FaaS + BaaS

R. Lachaize, T. Ropars 15

“Serverless computing” – Another definition

“Serverless computing is a cloud computing paradigm encompassing a class of cloud
computing platforms that allow one to develop, deploy, and run applications (or components
thereof) in the cloud without allocating and managing virtualized servers and resources
or being concerned about other operational aspects.

The responsibility for operational aspects, such as fault tolerance or the elastic scaling of
computing, storage, and communication resources to match varying application demands, is
offloaded to the cloud provider.
Providers apply utilization-based billing: they charge cloud users with fine granularity, in
proportion to the resources that applications actually consume from the cloud infrastructure,
such as computing time, memory, and storage space.”

(Source: S. Kounev et al. Serverless computing: What it is, and What it is not? Communications of the
ACM. September 2023.)

R. Lachaize, T. Ropars 16

Architecture of the serverless cloud

(Figure adapted from the following source, with modifications: Jonas et al. “Cloud programming simplified:
A Berkeley view on Serverless Computing.”)

Server Network Storage Accelerator

VM

container

VPC Block storage IAM Billing Monitoring

Big data
query

Big data
transform Messaging Future serverless

cloud services

Cloud
functions

Object
storage

Key-value
database

Mobile Backend
database

Web APIs Event data processing Future serverless applications

Hardware

Base cloud
platform

Serverless

Applications

R. Lachaize, T. Ropars 17

Serverless computing vs. PaaS
● Arguably, there are some similarities between serverless computing and traditional

PaaS offerings (or even older incarnations such as hosting of dynamic web sites):
§ Stateless programming model
§ Elasticity
§ Simplified programming and operational model for application developers

● However, there are also some key differences (in favor of serverless):
§ Better autoscaling: more generic, more reactive, greater scale, down to zero …
§ Stronger isolation (for security and performance)
§ Billing model with much finer granularity
§ Provider has more incentives to reduce overheads
§ More generic platforms: developers have more control/flexibility over the libraries that they can

use
§ More integration with other cloud services (via triggers)

R. Lachaize, T. Ropars 18

Serverless computing – Use cases
● Many use cases for applications running within data centers:

§ Web and API serving
§ Data processing, (e.g., ETL)
§ Integration with 3rd-party services
§ Internal tooling (e.g., testing, continuous integration/delivery)

● Also, other use cases closer to the end users (“edge computing”):
§ Content Delivery Networks (CDNs)

● E.g., putting (parts of) a Web application closer to the end users
§ IoT devices and gateways

● E.g., for faster/real-time processing, intermittent/slow connectivity to the cloud

● Note: Initially, serverless computing has been mostly used for batch workloads. Now, it is
also increasingly used for latency-sensitive operations (e.g., Web application backend).

R. Lachaize, T. Ropars 19

The FaaS ETL pattern – (“Extract, Transform, Load”)

● “ETL”: Histrorically, an expression initially used in the context of databases (for data
transfer & synchronization between different types of databases).

● In the context of FaaS, “ETL” is an analogy to describe the design pattern of most
functions:
§ Extract: obtain input data (either inlined in parameters or fetched from a remote storage)
§ Transform: perform some computation on the data and produce local result
§ Load: send the produced results, either as a result of the invocation or by writing it in a remote

storage

● As of mid-2019, the six typical use cases depicted on the home page of AWS Lambda
follow the FaaS ETL pattern:
§ Data processing: Real-time file processing, real-time stream processing, database ETL
§ Backends: IoT backend, mobile backend, Web applications.

(Sources: H. Fingler et al. USETL: Unikernels for Serverless Extract Transform and Load. Why should you settle for less?
In Proceedings of APSys 2019. And also AWS Lambda home page: https://aws.amazon.com/lambda/)

https://aws.amazon.com/lambda/

R. Lachaize, T. Ropars 20

Serverless computing – Potential benefits
● For cloud tenants:

§ Simplicity
§ Productivity
§ Increased portability (w.r.t. the low-level details of IaaS/CaaS)
§ Cost-efficiency (warning: not always)
§ Substrate for integration of various/arbitrary services

● For cloud providers:
§ Fine grained & stateless tasks simplify resource allocation and packing
§ Overall better resource usage and amortization
§ Leverage for “lock-in” of existing customers, given that:

● There are currently no standardized interfaces/features for serverless programming
● Serverless computing facilitates the integration of various services within a cloud provider’s portfolio and thus

fosters tighter coupling between them

R. Lachaize, T. Ropars 21

FaaS – “Functions as a Service”
● The main building block of serverless computing.
● Paradigm pioneered by AWS Lambda in 2014-2015

● Now supported by all major cloud providers. For example:
§ Google Cloud Functions
§ Microsoft Azure Functions
§ IBM Cloud Functions

● Some open-source platforms
§ Apache OpenWhisk
§ OpenFaaS
§ Various projects based on Kubernetes (Knative, Fission …)

● For a detailed list of tools and platforms, see: https://landscape.cncf.io/serverless

https://landscape.cncf.io/serverless

R. Lachaize, T. Ropars 22

FaaS – Main principles
● Programming model:

§ Functions are intended for short-lived tasks.
§ Functions must be stateless (no state must be kept between invocations).
§ If necessary, an external storage system can be used to store/retrieve state.

● In the setup phase, the application developer:
§ writes one or several functions, and uploads them to the cloud
§ configures the trigger rule(s) associated with each function

● Execution phase:
§ A new function invocation request is dispatched when a trigger rule fires.
§ The request is routed to a “sandbox” (e.g., a container or a virtual machine) hosting the

target function. The target sandbox can be created on the fly or reused from a previous
execution.

§ The management of sandboxes (creation, destruction, up/down scaling of function instances) and
the routing of requests are fully and automatically handled by the FaaS infrastructure.

R. Lachaize, T. Ropars 23

FaaS – Trigger rules
● The trigger rules for a function invocation request can be based on various

events: various types and origins (internal or external to the cloud platform).
● Multiple triggers can be registered for the same function.

● Some examples of trigger events:
§ HTTP request to a given URL

● For example, an external request to “API gateway” (i.e., the external entry point/façade of a
Web application/service)

§ Arrival of a message in a message queue
§ Modification in an object store (e.g., creation of a new object within a bucket)
§ Modification in a database table
§ Completion of a previous function invocation (workflow / state machine)

R. Lachaize, T. Ropars 25

FaaS versus IaaS – A detailed comparison (1/2)
For programmers

(Table adapted from the following source: Jonas et al. “Cloud programming simplified: A Berkeley view on Serverless
Computing.” Note that the default AWS numbers are circa January 2019).

Characteristics AWS Lambda
(FaaS)

AWS EC2
(IaaS, on-demand instances)

When the program is run On event selected by user (programmer) Continuously until explicitly stopped

Programming language Any but mostly high-level (e.g., Python) Any

Libraries managed by Provider (often) or user/programmer User (programmer)

Program state Kept in storage (stateless) Anywhere (stateful or stateless)

Max. memory size 0.125 to 3 GiB (2022: up to 10 GiB) 0.5 to 1952 GiB (2022: up to 24 TiB)

Max. local storage 0.5 GiB (2022: up to 10 GiB) 0 to 3600 GiB (2022: up to 60 TiB)

Max. running time 15 minutes None

Minimum accounting unit 0.1 second (2022: 1 millisecond) 60 seconds (2022: 60s then 1s)

Price per accounting unit $0.0000002 (assuming 0.125 GiB) $0.0000867 to $0.4080000

R. Lachaize, T. Ropars 26

FaaS versus IaaS – A detailed comparison (2/2)
For system administrators

(Table adapted from the following source: Jonas et al. “Cloud programming simplified: A Berkeley view on Serverless
Computing.”)

Characteristics AWS Lambda
(FaaS)

AWS EC2
(IaaS, on-demand instances)

Server instance type chosen by Provider User (sysadmin)

Autoscaling managed by Provider User (sysadmin)

Deployment management by Provider User (sysadmin)

Fault tolerance managed by Provider User (sysadmin)

Monitoring managed by Provider User (sysadmin)

Logging managed by Provider User (sysadmin)

R. Lachaize, T. Ropars 27

FaaS – Code packaging

● The packaging/build of functions and their dependencies is typically automated,
if the application programmers use one of the standard environment supported
by the provider (e.g., common Python or Javascript environments).

● Programmers can also build and ship custom runtimes and/or (black-box)
binary code.

● As of mid-2019, a vast majority of functions are written in Javascript (Node.js)
or Python.

R. Lachaize, T. Ropars 28

FaaS – Invocation model
● A function invocation can be either synchronous or asynchronous.

● Synchronous invocation:
§ Client waits for completion of the invocation
§ In case of failure/timeout: typically, no automatic retry by the FaaS platform

● Asynchronous invocation:
§ Client does not wait for the completion of the invocation, and can query status/result

later
§ In case of failure/timeout: typically, automatic retry of the invocation by the FaaS

platform

● Some types of trigger events have restrictions
§ Invocations triggered by message queues or storage events are asynchronous
§ HTTP-based invocations can be synchronous or asynchronous

R. Lachaize, T. Ropars 29

FaaS – Execution model
● In most designs, a given sandbox:

§ Only hosts a single function
§ Only processes a single request at a time

● The FaaS infrastructure decides when to scale the number of sandboxes for a given
function, up & down
§ The number of sandboxes for a function may scale down to zero / up from zero
§ Upscaling is limited by a “concurrency limit” threshold (user defined)
§ The user (cloud tenant) is only billed for the time spent by sandboxes handling function

invocations, not the idle time of the sandboxes

● The above characteristics may impact the latency of the FaaS platforms for handling a
function invocation request.
§ “Cold starts” versus “Warm starts”
§ Various strategies exist for reducing the performance impact of cold starts (or avoiding them).

R. Lachaize, T. Ropars 30

FaaS – Workflows
● Many FaaS platforms provide support for functions workflows, allowing to create more

elaborate tasks/applications by creating sequential and/or parallel chains of
functions.

● FaaS workflows are typically:
§ Built as a higher-lever feature on top of a standard FaaS platform
§ Based on a state automata orchestrating the transitions between steps

● Example scenario 1: Registration of a new user in a Web application (account set up,
sending of a confirmation email, etc.)

● Example scenario 2: Fork-join parallelism

● E.g., AWS step functions, Azure Durable functions, IBM Cloud Functions Composer

R. Lachaize, T. Ropars 31

FaaS – Current limitations (1/4)
● We have already mentioned several use cases that are well adapted to

§ Web APIs
§ Simple “FaaS ETL” event-driven workloads bridging
§ Enterprise workflows
§ Coarse-grained embarrassingly parallel computations

● However, current FaaS offerings suffer from several important limitations that
make them suboptimal, disappointing or even impractical for many workloads
and use cases.

● In the next cases, we will discuss some of these limitations.

R. Lachaize, T. Ropars 32

FaaS – Current limitations (2/4)
● Slow storage

§ The stateless nature of FaaS forces it to heavily rely on external storage services (e.g., object
storage like AWS S3), which have poor latencies (≥ 10 ms for small objects) and possible high
costs for high-throughput configurations.

§ Throughput may also be a problem (poorer than a single local SSD) and worsen if many network-
intensive functions are co-located.

● Lack of fine-grained coordination between functions
§ Current FaaS platforms provide no means for fast/simple/serverless notifications between tasks

(which may be running on different machines).
§ At best, application designer must provide their own solutions, typically deployed on long-running

virtual machines.
§ More generally, functions are not network addressable. They can initiate outbound network

connections but cannot receive inbound connection requests or messages.
§ This exacerbates the lack of locality (no client stickiness) and the negative performance impact of

slow storage.

R. Lachaize, T. Ropars 33

FaaS – Current limitations (3/4)
● Poor performance for popular communication patterns

§ Typical communication patterns used in parallel/distributed applications (e.g.,
broadcast, aggregation, shuffle) have much lower performance than with virtual
machines.

§ Indeed, FaaS applications cannot control the placement of tasks and therefore cannot
leverage traditional optimizations based on hierarchical communications.
Consequently, FaaS based applications generate more network messages.

● Lack of performance predictability
§ Warm vs. cold starts
§ Hardware and workload heterogeneity

R. Lachaize, T. Ropars 34

FaaS – Current limitations (4/4)
● No (or very limited) support for diverse resource requirements

§ Users have very limited means to express specific hardware/resource requirements. The only
configuration options are generally the number of CPUs and the RAM capacity (with limited
options, and often in a coupled way).

§ No support for hardware accelerators

● Limited lifetime
§ A given task can run at most for 15 minutes.
§ There is no guaranteed way to persist state locally.

● Risks of vendor/provider lock-in
§ There are currently no standardized APIs and features.
§ Many functions as acting as glue between services of a given provider.
§ Possibility for users to deploy their own FaaS infrastructure (on top of IaaS/HaaS) but may be

complex and costly.

R. Lachaize, T. Ropars 35

Storage characteristics for FaaS: current vs. ideal

(Table adapted from the following source: Jonas et al. “Cloud programming simplified: A Berkeley view on Serverless Computing.” Note that the
AWS numbers are circa January 2019).

Block
storage

Object storage File system Elastic
database

Memory store “Ideal” storage
service for

FaaS

Cloud function access
No Yes Yes Yes Yes Yes

Transparent
provisioning No Yes Capacity only

(not IOPS) Yes No Yes

Availability and
persistence
guarantees

Local &
persistent

Distributed &
persistent

Distributed &
persistent

Distributed &
persistent

Local &
ephemeral Various

Latency (mean)
< 1 ms 10 – 20 ms 4 – 10 ms 8 – 15 ms < 1 ms < 1 ms

Storage capacity
(1 GB / month) $0.10 $0.023 $0.30 $0.18 – $0.25 $1.87 ~$0.10

Throughput
(1 MB/s for 1 month) $0.03 $0.0071 $6.00 $3.15 – $255.1 $0.96 ~$0.03

IOPS (1/s for 1
month) $0.03 $7.1 $0.23 $1 – $3.15 $0.037 ~$0.03

C
os

t

R. Lachaize, T. Ropars 37

FaaS platform case studies

We will study two examples of open-source FaaS platforms:

● Apache OpenWhisk

● CNCF Knative

R. Lachaize, T. Ropars 38

Case study: Apache OpenWhisk (1/2)

Image source & more details about the different steps:
https://github.com/apache/openwhisk/blob/master/docs/about.md#how-openWhisk-works)

https://github.com/apache/openwhisk/blob/master/docs/about.md

R. Lachaize, T. Ropars 39

Case study: Apache OpenWhisk (2/2)

(source: https://github.com/apache/openwhisk)

https://github.com/apache/openwhisk

R. Lachaize, T. Ropars 40

Case study: Knative (1/9)
● An open-source project initially created by Google and now managed by the

CNCF (Cloud Native Computing Foundation).
● Based on Kubernetes, with additional components and customization.
● Knative is a framework aimed at simplifying the design and hosting of

serverless/FaaS applications.

● Knative includes two main parts:
§ Knative Serving: aimed at deploying/upgrading/scaling functions, and routing

function invocations.
§ Knative Eventing: aimed at interconnecting heterogeneous systems through an

event-driven architecture (routing events between events producers and consumers,
using brokers and triggers).

● Here, we focus on Knative Serving.

R. Lachaize, T. Ropars 41

Case study: Knative (2/9)
Knative Serving – Main concepts:
● “Configuration”:

§ A Configuration describes the desired state of a deployed system (including code + setup information): chosen
container image, environment variables, etc.

§ Knative automatically converts this high-level statement into low-level Kubernetes concepts such as
“deployments”.

● “Revision”: an immutable snapshot of a Configuration.
§ Modifying a Configuration creates a new Revision.
§ Multiple revisions of the same application can coexist.

● “Route”: maps a network endpoint to one or more Revisions.

● “Service”: encapsulates a Route and a Configuration.

Case study: Knative (3/9)
Knative Serving – Main concepts – Wrap up:

● A Route provides a named endpoint and a
mechanism for routing traffic to …

● Revisions, which are immutable snapshots of code
+ config, created by a …

● Configuration, which acts as a stream of
environments for Revisions.

● A Service acts as a top-level container for
managing a Route and Configuration which
implement a network service.

R. Lachaize, T. Ropars 42

Source for text and figure: Knative documentation
https://github.com/knative/specs/blob/main/specs/serving/overview.md

https://github.com/knative/specs/blob/main/specs/serving/overview.md

R. Lachaize, T. Ropars 43

Case study: Knative (4/9)
Knative Serving – Main components:

● Serving controller
§ Encapsulates several sub-components named “reconcilers”
§ Each reconciler is a feedback controller dedicated to a specific aspect: services,

routes, configurations, revisions, labels, …

● Networking controllers
§ Configure TLS/SSL certificates
§ Configure HTTP Ingress routing

R. Lachaize, T. Ropars 44

Case study: Knative (5/9)
Knative Serving – Main components (continued) :

● Webhook
§ Intercepts, validates and enriches the records (services, routes, configurations)

submitted by the user.

§ Among other things, this component is in charge of:
● Checking the validity of the submitted config parameters
● Setting up default values for implicit parameters
● Injecting routing and networking configuration into Kubernetes

R. Lachaize, T. Ropars 45

Case study: Knative (6/9)
Knative Serving – Main components (continued):
● Autoscaler + Activator + Queue Proxy

§ These three components interact to react to input load/traffic changes (i.e., significant increases
or decreases of the number of client invocation requests).

§ The (pod) Autoscaler monitors the current level of traffic and adjusts the number of pod instances
deployed for the service, possibly down to zero.

§ The Queue Proxy is deployed as a sidecar in every (pod) instance of the service.
● It keeps tracks of the requests assigned to a given pod instance, and their completion.
● It buffers and throttles the incoming requests to enforce the per-pod concurrency limit set by the application.
● It regularly sends metrics (e.g., queue depth) to the Autoscaler.

§ The Activator receives and buffers the incoming traffic when there is no pod instance, until one or
several instances are created by the Autoscaler.

R. Lachaize, T. Ropars 46

Case study: Knative (7/9)
Knative Serving – Main components – Wrap up:

(Source: https://knative.dev/docs/serving/architecture/)

https://knative.dev/docs/serving/architecture/

R. Lachaize, T. Ropars 47

Case study: Knative (8/9)
Knative Serving – Autoscaling – Wrap up:

Source: J. Li et al. Analyzing Open-Source Serverless Platforms: Characteristics and Performance. 2021.

R. Lachaize, T. Ropars 48

Case study: Knative (9/9)
For more details:
● Knative Serving documentation: https://knative.dev/docs/serving/

● Book: “Knative in action” by Jacques Chester

§ Free chapter: “Introducing Knative serving”:
https://freecontent.manning.com/introducing-knative-serving/

§ Full ebook freely available from Vmware:
https://tanzu.vmware.com/content/ebooks/knative-in-action

https://knative.dev/docs/serving/
https://freecontent.manning.com/introducing-knative-serving/
https://tanzu.vmware.com/content/ebooks/knative-in-action

